

2025

CONFIDENTIAL

The content of this document is confidential and intended for the training of employees of official PathoSense Partnerlabs. It is strictly forbidden to share any part of this document with any third party, without a written consent of PathoSense.

Wet lab flow diagnostics PathoSense

WET LAB V - ONT

Preparation of the library and loading of the flow cell

Timing ~ 45 min

Overview

DNA fragmentation and barcoding

DNA clean-up using AMPure XP beads

Adapter Ligation and loading

DNA fragmentation and barcoding

Reagents

- SQK-RBK114.24 ONT
- Ethanol
- Bovine Serum Albumine (no recombinant!)

Materials

- DNA-Lobind 1.5 mL Eppendorf tubes (3)
- 0.2 mL thin-walled PCR tubes (per sample +1)

- Magnetic rack
- Wide-bore tips

- All surfaces should be cleaned with Hibiscrub, 70% Ethanol, and 10% Bleach in this order of cleaning. Prevent contamination.
- Aerosol-barrier tips should be used throughout the entire procedure.
- Perform all steps in the dedicated sample preparation area.

Preparations

- Pre-heat the **heat block to 50°C**

Protocol

1. Transfer **15 µl sample** in a 0.2 ml thin-walled PCR tube
2. Quick spin the **Fragmentation Mix RB01-24**, one barcode for each sample
3. Add **2.5 µl Fragmentation Mix RB01-24** to each sample (add a different barcode to each sample)
4. **Mix gently** by tapping the tube with your fingers, and spin down
5. Incubate the tube at **30°C for 2 minutes** and then at **80°C for 2 minutes** in a thermocycler

Immediately transfer to ice

DNA clean-up using AMPure XP beads

6. Quickly spin the samples
7. Pool the samples together in a 1.5 mL Eppendorf LoBind tube
8. Resuspend the **AMPure XP beads** by vortexing and quick spin
9. Use wide-bore tips to add an equal volume of resuspended **AMPure XP beads** to the pooled sample (1:1 ratio, 210 µL for 12 samples)
10. **Gently mix** the suspension by tapping the tube with your fingers and **quick spin**
11. **Incubate** the suspension for **5 minutes** at **room temperature**

In the meanwhile prepare the fresh 80% ethanol:

- It is important to prepare **fresh** 80% ethanol each time, since ethanol attracts water when kept too long
- Add **800 µL 100% ethanol** (Molecular grade) and **200 µL DNase/RNase- free water** in a 1.5 mL Eppendorf tube.

12. Place the sample centered into the **magnet holder**, and incubate for **2 minutes**
13. **Remove the supernatant** using a P200 pipette tip
14. Gently **wash the beads** using **500 µL fresh 80% ethanol**, without disturbing them
15. **Remove the ethanol**, and **repeat** the wash step (14)
16. **Remove the ethanol**, and spin the sample down
17. Place the sample in **magnet holder** and **remove the residual of the ethanol** with P20 pipette tip
18. **Incubate** the tubes with open lids for **MAX 5 minutes at 50°C** to evaporate all the ethanol and to dry the beads

Incubate until a 'dry' pellet is observed and no more ethanol is visible
19. When a 'dry' pellet is observed **add 13 µL Elution buffer** straight on the pellet (DO NOT PIPET)
20. **Tap the tube** to dissolve the magnetic beads, quick spin
21. Incubate at **room temperature for 2 minutes** to elute the DNA
22. Incubate for **2 more minutes** on the **magnetic rack**
23. Transfer the **13 µL of eluate** to a newly labeled Eppendorf LoBind tube
24. Place the tube once more on **the magnetic rack for 2 minutes**
25. **Transfer 11 µL of the supernatant** to a 0.2 mL thin-walled PCR tube

Library preparation - Adapter Ligation and loading

26. Quick spin the **Rapid Adapter (RA)** and the **Adapter Buffer (ADB)**
27. In a new 1.5 mL Eppendorf DNA LoBind tube, add **1.5 µL Rapid Adapter (RA)** and **3.5 µL Adapter Buffer (ADB)**, mix by tapping with fingers and quick spin
28. Add **1 µL of the RA/ADB mix** to 11 µL of barcoded DNA, mix by tapping with fingers and quick spin

29. Incubate the tube for **5 minutes at 21°C** in the thermocycler
30. Vortex and quick spin **Flow Cell Flush (FCF)** and **Flow Cell Tether (FCT)**
31. Add **30 µL Flow Cell Tether (FCT)** to the tube with **1.17 mL Flow Cell Flush (FCF)**
32. Add **5 µL Bovine Serum Albumine (BSA)** to the tube and put the tube on ice
33. Vortex **Library Beads (LIB)** and **Sequencing Buffer (SB)**. Quick spin the sequencing buffer, do not spin the library beads.
34. Add **37.5 µL Sequencing Buffer (SB)** to a new tube
35. Add **25.5 µL Library Beads (LIB)** to the tube using wide bore tips
36. Add **12 µL DNA Library** to the tube
37. Open the **MinION** device lid and slide the flowcell under the clip
38. Perform a **flow cell check**.
 - a. Go to the 'start' tab in the MinKNOW software
 - b. Click on 'Flow cell check'
 - c. Select the correct flow cell position
 - d. Click on 'Start'
39. Open the device lid and **open the priming port** by sliding the priming port cover clockwise
40. Set a **P1000 pipette to 800 µl** and insert the tip into the **priming port**
41. Turn the wheel until the dial shows 820-830 µl, to **draw back 20-30 µl**, or until you can see a small volume of buffer entering the pipette tip
42. Load **800 µl of the priming mix** into the flow cell via the priming port, avoiding the introduction of air bubbles
43. Close the priming port and **wait for 5 minutes**
44. **Open the priming port** and gently **lifting the SpotON sample port** cover to make the SpotON sample port accessible
45. Load **200 µl of the priming mix** into the flow cell priming port (not the SpotON sample port), avoiding the introduction of air bubbles
46. **Mix the library** gently by shaking it or pipetting it up and down before loading
47. Add **75 µl of sample** to the flow cell via the SpotON sample port in a dropwise fashion
48. Gently **replace the SpotON sample port** cover, making sure the bung enters the SpotON port, **close the priming port** and **close the MinION device lid**

Set up a sequence run on MinKNOW, proceed with

WET LAB VI - RUN SET-UP